

PROGRAMA DE **FÍSICA**

12.º Ano de Escolaridade (Versão *Experimental*)

Ficha Técnica

Título

Programa de Física – 12º Ano de Escolaridade

Editores/Autores

Ministério da Educação

Coordenação

Direção Nacional de Educação / Serviço de Desenvolvimento Curricular

Elaboração / Concetores

Bruno Conde

Carla Fernandes

Silvestre Baptista

Elaboração / Validadores

Hélder Ramalho

Isabel Rebelo

Propriedade

Ministério da Educação Palácio do Governo C.P. 111

Tel.: +238 262 11 72 / 11 76 Cidade da Praia – Santiago

Data: junho de 2024

Índice

1.	INTRODUÇÃO	3
1.1.	Aprendizagens dos alunos no final do Ensino Secundário (9.º ao 12.º ano) .	3
1.2.	Articulação com o Ensino Básico	5
2. DIS	APRESENTAÇÃO, FINALIDADES E ORIENTAÇÕES GERAIS DA CIPLINA	6
2.1.	Propósito da Disciplina no Ensino Secundário	6
2.2.	Finalidades	7
	Competências a desenvolver	
2.4.	Visão Geral dos Temas / Conteúdos	10
2.5.	Indicações Metodológicas gerais	11
2.6.	Indicações gerais para a Avaliação das Aprendizagens	12
3.	ROTEIROS DE APRENDIZAGEM	14
3.1.	Natureza e Roteiros de Aprendizagens	14
	Roteiro de Aprendizagem e Indicadores de Avaliação do Programa do 12.º	15
4.	BIBLIOGRAFIA CONSULTADA	28
5	RECURSOS EDUCATIVOS RECOMENDADOS	30

1. INTRODUÇÃO

A disciplina de Física integra a componente de formação Específica (opcional) da Matriz Curricular do Ensino Secundário da Área de Ciência e Tecnologia no 12.º ano, plasmada no Decreto-Lei n.º 27/2022 do B.O. n.º 68 de 12 de julho da República de Cabo Verde.

No presente programa de Física do 12.º ano de escolaridade faz-se a articulação com o Ensino Básico e com os restantes anos do Ensino Secundário, tendo por base as aprendizagens dos alunos no final deste ciclo de ensino. Apresentam-se as finalidades e as orientações gerais da disciplina, incluindo as competências a desenvolver, os temas e conteúdos, as indicações metodológicas gerais e de avaliação das aprendizagens. O roteiro de aprendizagem integra os temas e subtemas a abordar, especificando conteúdos e conceitos, objetivos de aprendizagem, sugestões metodológicas e indicadores de avaliação das aprendizagens. Por fim, são indicados recursos educativos recomendados, sem prejuízo de outros recursos que sejam considerados pertinentes no desenvolvimento das atividades letivas, para além da bibliografia institucional e científica que esteve na base da conceção deste documento.

Este documento deverá servir como base para a planificação do ensino, não obstante o seu desenvolvimento dever ser encarado numa perspetiva de flexibilidade face à necessidade de adaptação a contextos educativos específicos.

1.1. APRENDIZAGENS DOS ALUNOS NO FINAL DO ENSINO SECUNDÁRIO (9.º AO 12.º ANO)

A inclusão da disciplina de Física no currículo escolar do ensino secundário é de importância fundamental para o desenvolvimento dos alunos, visando proporcionar uma formação científica consistente no domínio do respetivo curso, mantendo uma abrangência ampla, para prosseguir o desenvolvimento de uma cultura científica e humanista.

Tendo em conta a natureza e a diversidade das aprendizagens a realizar no âmbito da Física, esta disciplina assume um papel essencial no processo educativo dos alunos. Com efeito, os domínios de conhecimento abrangidos pela disciplina implicam aspetos múltiplos da vida humana, tanto na sua vertente científica e tecnológica, como na relação com o mundo biológico, sem esquecer as vertentes ambiental e de sustentabilidade e as competências digitais, de informação e comunicação. A relação dinâmica que se estabelece entre domínios confere aos conteúdos curriculares das áreas da Física um grande valor educativo, o qual se concretiza, no âmbito do desenvolvimento de conhecimentos, capacidades, atitudes e comportamentos, no sentido da inovação e desenvolvimento pessoal e social dos alunos, enquanto cidadãos reflexivos capazes de compreenderem ideias científicas e de se envolverem em questões académicas e socio-científicas relacionadas com as ciências.

Importa referir que o programa apresentado possibilita a elaboração de planificações diversificadas, contextualizadas na realidade local e na especificidade da turma, potenciadoras de conhecimento científico conceptual, mas também de conhecimento

sobre Ciência e do desenvolvimento de atitudes e capacidades científicas. Deste modo, os alunos desenvolverão conhecimentos, capacidades e atitudes (competências) que lhes permitam interpretar dados e evidências e explicar fenómenos (naturais e tecnológicos) cientificamente e, ainda, envolver-se em investigações científicas para resolver problemas e construir conhecimento, formulando conclusões sustentadas em dados empíricos enquadrados por conhecimento conceptual relevante.

De acordo com o documento Desenho dos Perfis de Escolarização e Formação dos Alunos do Ensino Não Superior (secção PERFIL GERAL DE SAÍDA DO ENSINO NÃO SUPERIOR, p. 2-4) e no âmbito da disciplina de Física, espera-se que, no final do Ensino Secundário, os alunos tenham desenvolvido competências nas seguintes áreas, a saber:

Áreas de	COMPETÊNCIAS GERAIS PARA O ENSINO SECUNDÁRIO
competências	No final do Ensino Secundário, o aluno:
Matemáticas	Resolve problemas da vida quotidiana com o grau de
	complexidade compatível ao seu nível de escolaridade, apoiando-
	se nas ferramentas eletrónicas e digitais, nas técnicas e conceitos
	matemáticos que impliquem raciocínio e pensamento lógico,
	crítico e argumentativo, formulando e analisando questões com
	propostas de soluções pertinentes para a sociedade.
Raciocínio Lógico,	Aceder à informação numa linguagem determinada, analisa a sua
Gráfico e	consistência e validade lógica, estabelece cadeias de causa-
Topológico	efeito, estabelece conexões, procede a classificações, construir
	argumentos ou raciocínios válidos, refuta os argumentos
	contraditórios e os inconsistentes, raciocina algoritmicamente,
	exprime-se através de gráficos e esquemas, interpreta e descreve
	experiências e produzir conhecimento.
Resolução de	Encontra respostas para uma nova situação, mobilizando o
Problemas	conhecimento e o raciocínio lógico com vista à tomada de
	decisão, à construção de modelos e uso de estratégias e à
	eventual formulação de novas questões e hipóteses.
Pensamento	Observa, identifica, analisa e dá sentido à informação, às
Crítico	experiências e às ideias e argumenta a partir de diferentes
	premissas e variáveis.
Pensamento	Gera e aplica novas ideias em contextos específicos, abordando
Criativo	as situações a partir de diferentes perspetivas, identificando
	soluções alternativas, destacando as ótimas, e estabelecendo
	novos cenários
Aprender a	Utiliza as capacidades (atenção, concentração, memória,
Aprender	compreensão linguística e motivação), para desenvolver as
	aprendizagens de forma autónoma e com domínio de estratégias

	e técnicas de estudo, consciente das suas capacidades,
	limitações, responsabilidades e deveres a nível pessoal e coletivo,
	definindo objetivos a curto, médio e longo prazo, assim como
	estratégias para atingir os objetivos propostos.
Ciências e	A partir de fenómenos, o aluno invoca as teorias científicas e
Tecnologias	filosóficas afins, identifica a área científica de interesse, formula
	perguntas pertinentes, procurando respondê-las, através de
	formulação de hipóteses, procedendo à experimentação para a
	obtenção de resultados, seguido de tratamento e análise de dados
	no sentido de compreender a relevância das ciências
	(experimentais e sociais), da filosofia e nalguns casos do senso
	comum.
Ética, cidadania,	Conhecimento e pratica regras e normas de conduta, na
ambiente e	sociedade, na escola, nos grupos de trabalho e de recreio, no
Sustentabilidade	trabalho individual;
	Promove hábitos de vida que respeitem os recursos naturais
	ambiente, nos seus aspetos local e global, que levem à sua
	preservação, utilização sustentável e regeneração.

Articulação entre os vários anos do Ensino Secundário

Para além das aprendizagens realizadas ao longo do Ensino Básico, também os conhecimentos e competências desenvolvidas nos 9.º, 10.º e 11.º anos terão de ser mobilizadas. Este pressuposto justifica-se pela aplicação de um paradigma de conceção do programa do 12.º ano assente num racional de currículo em espiral. Esta lógica de construção do currículo baseia-se numa perspetiva construtivista da aprendizagem e caracteriza-se por incluir num dado programa conteúdos que já foram abordados em anos de escolaridade anteriores, mas aprofundando-os e ampliando a sua abrangência, ou seja, a capacidade de aplicação à compreensão de uma maior diversidade de situações.

Assim, a planificação das atividades letivas para um determinado tema, ou mesmo para um ano de escolaridade, deve ter em conta o encadeamento das aprendizagens – conhecimentos, competências e capacidades – <u>que um aluno vai desenvolver, perspetivando-as, em articulação, ao longo dos vários anos do estudo da disciplina.</u> Dessa forma, a aprendizagem vai ocorrer de forma mais sistémica, consistente e, portanto, significativa.

1.2. ARTICULAÇÃO COM O ENSINO BÁSICO.

Nos 7.º e 8.º anos de escolaridade, a disciplina de Físico-Química terá proporcionado aos alunos conhecimentos, capacidades e atitudes para a compreensão básica de alguns fenómenos que a Física e a Química podem explicar, bem como para a construção de conhecimento científico. Assim, as capacidades de observação, classificação, medição, formulação de hipóteses, interpretação, inferência e previsão já adquiridas no Ensino Básico Obrigatório (EBO) deverão ser aprofundadas e

alargadas no ensino secundário, articulando as vertentes teórica e prática da Física enquanto ciência de base experimental.

O programa da disciplina de Física para o 12.º ano de escolaridade deverá mobilizar todo o conhecimento adquirido pelos alunos no EBO e promover o desenvolvimento de competências das diversas áreas mencionadas na secção 1.1.

2. APRESENTAÇÃO, FINALIDADES e ORIENTAÇÕES GERAIS DA DISCIPLINA

2.1. PROPÓSITO DA DISCIPLINA NO ENSINO SECUNDÁRIO

Os alunos que concluem o Ensino Secundário devem ter desenvolvido competências transversais e específicas (conhecimentos, capacidades e atitudes), em concordância com a definição de literacia científica segundo o PISA, a qual se articula em três domínios, nomeadamente: explicar fenómenos cientificamente (identificar, apresentar e avaliar explicações para um conjunto de fenómenos naturais e tecnológicos); avaliar e conceber investigações científicas (descrever e julgar investigações científicas e propor formas de abordar questões científicamente); e interpretar dados e evidências científicamente (analisar e avaliar dado, afirmações e argumentos apresentados de várias formas e retirar conclusões científicas legítimas) (Lourenço, 2019).

A literacia científica dos alunos, à saída do ensino secundário, deve ser baseada na articulação entre o conhecimento e o saber fazer, associados à capacidade de pensar de forma crítica e criativa. Assim, a experimentação assume um papel preponderante na operacionalização dos conhecimentos, capacidades e atitudes, contribuindo não só para desenvolver nos alunos a competência de resolver problemas, mas também para estimular a sua autonomia e desenvolvimento pessoal e as relações interpessoais.

A disciplina deverá ainda potenciar o despertar para o estudo da Física e das ciências naturais, e das tecnologias, com vista ao prosseguimento de estudos no ensino superior.

Assim, a disciplina de Física do 12.º ano deverá:

- Proporcionar aos alunos uma base sólida de capacidades e de conhecimentos da física, e dos valores da ciência, que lhes permitam distinguir alegações científicas de não científicas, especular e envolver-se em comunicações de e sobre ciência, questionar e investigar, extraindo conclusões e tomando decisões, em bases científicas, procurando sempre um maior bem-estar pessoal, social e ambiental, tal como preconizado nos Objetivos de Desenvolvimento Sustentável (ODS);
- Promover o reconhecimento da importância da física na compreensão do mundo natural e na descrição, explicação e previsão dos seus múltiplos fenómenos, assim como no desenvolvimento tecnológico e na qualidade de vida dos cidadãos em sociedade;

- Contribuir para o aumento do conhecimento científico necessário ao prosseguimento de estudos e para uma escolha fundamentada da área desses estudos.

2.2. FINALIDADES

A disciplina de Física, no 12.º ano, tem como finalidades:

- Consolidar, aprofundar e ampliar conhecimentos através da compreensão de conceitos, leis e teorias que descrevem, explicam e preveem fenómenos, assim como fundamentam aplicações em situações e contextos diversificados;
- Desenvolver hábitos e competências inerentes ao trabalho científico: observação, pesquisa de informação (selecionar, analisar, interpretar e avaliar criticamente informação relativa a situações concretas), experimentação envolvendo material/equipamento específico da Física, abstração, generalização, previsão, espírito crítico, resolução de problemas e comunicação de ideias e resultados, utilizando formas variadas;
- Desenvolver competências de reconhecer, interpretar e produzir representações variadas da informação científica e do resultado das aprendizagens: relatórios, esquemas e diagramas, gráficos, tabelas, equações, modelos e simulações computacionais;
- Destacar o modo como o conhecimento científico é construído, validado e transmitido pela comunidade científica e analisar situações da história da Física;
- Fomentar o interesse pela importância do conhecimento científico e tecnológico na sociedade atual e uma tomada de decisões fundamentada procurando sempre um maior bem-estar social.

As competências a serem desenvolvidas no 12.º ano servirão de base para o prosseguimento de estudos, sendo desejável que os alunos estejam em condições de fazer uma escolha esclarecida aquando do seu ingresso no ensino superior ou na vida ativa. A par com isto, pretende-se também que o aluno adquira "independência de pensamento" e seja capaz de recolher "informação útil para o seu projeto de vida de forma permanente e ao longo da vida." (Desenho dos Perfis de Escolarização e Formação dos Alunos do Ensino Não Superior, p. 14).

2.3. COMPETÊNCIAS A DESENVOLVER

Por forma a cumprir as finalidades da disciplina de Física do 12.º ano e à luz do Desenho dos Perfis de Escolarização e Formação dos Alunos do Ensino Não Superior, os alunos deverão desenvolver as seguintes competências:

Competências Matemáticas

- Analisar propriedades e relações métricas, geométricas, e, de uma forma geral, entre grandezas variáveis, na vida quotidiana;
- Utilizar técnicas e conceitos matemáticos para resolver problemas diversos em situações da vida quotidiana;

- Formular perguntas para resolver problemas com diferentes graus de complexidade;
- Analisar e argumentar as soluções que propõe;
- Colocar e testar hipóteses, usando raciocínio matemático e pensamento lógico;
- Desenvolver a capacidade de análise de dados, através de diferentes tipos de número e escolhe os cálculos apropriados para cada situação;

Competências de Raciocínio Lógico, Gráfico e Topológico

- Exprimir-se em linguagem clara, consistente e não contraditória;
- Expressar-se gráfica, simbólica e esquematicamente;
- · Proceder a classificações;
- Estabelecer cadeias causais entre fenómenos, identificando variáveis dependentes e independentes;

Competências de Resolução de Problemas

- Interpretar informação, planear e efetuar pesquisas;
- Mostrar capacidade de síntese na discussão e apresentação dos problemas que resolve;

Competências de Pensamento Crítico

- Prever e avaliar o impacto das suas decisões;

Competências de Pensamento Criativo

 Desenvolver novas ideias e soluções, de forma imaginativa e inovadora, como resultado da interação com outros ou da reflexão pessoal, aplicando-as a diferentes contextos e áreas de aprendizagem;

Competências relacionadas com Aprender a Aprender

- Utilizar as suas capacidades para desenvolver a aprendizagem (atenção, concentração, memória, compreensão linguística, motivação);
- Pesquisar e selecionar informação relevante, transformando-a em conhecimento;
- Tomar decisões no seu dia a dia na perspetiva do seu desenvolvimento pessoal, social e profissional;
- Manifestar atitudes de abertura e adaptação à mudança, de curiosidade intelectual e de problematização, face aos saberes adquiridos e à necessidade de adequação a novas situações;
- Manifestar hábitos de trabalho individual e de participação em trabalhos de grupo, tomando iniciativas e aceitando a opinião e intervenção de outros;
- Manifestar atitudes de responsabilidade e solidariedade no exercício de uma cidadania informada, ativa, participada e inclusiva no respeito pelo seu bem-estar e dos outros e pela dignidade do ser humano.

Competências relacionadas com Ciências e Tecnologias

- Conhecer conceitos, teorias, leis, princípios e método de investigação científica;
- Conhecer tecnologias, produtos e processos tecnológicos;
- Compreender processos e fenómenos científicos que permitam a tomada de decisão e a participação em fóruns de cidadania;
- Manipular e manusear materiais e instrumentos diversificados para controlar, utilizar, transformar, imaginar e criar produtos e sistemas;
- Executar operações técnicas, segundo uma metodologia de trabalho adequada, para atingir um objetivo ou chegar a uma decisão ou conclusão fundamentada, adequando os meios materiais e técnicos à ideia ou intenção expressa;
- Adequar a ação de transformação e criação de produtos aos diferentes contextos naturais, tecnológicos e socioculturais, em atividades experimentais, projetos e aplicações práticas desenvolvidos em ambientes físicos e digitais;
- Mobilizar conhecimentos e procedimentos científicos e tecnológicos para a tomada de decisões fundamentadas, contribuindo para a resolução de problemas inerentes às necessidades humanas, à melhoria da sua qualidade de vida e à preservação do planeta Terra;
- Desenvolver capacidades e atitudes de curiosidade, rigor, objetividade, análise e raciocínio lógico para a construção de conhecimento científico;
- Conhecer códigos e normas de segurança para a manipulação de equipamentos e materiais em ambiente laboratorial;
- Manipular e manusear com precisão materiais e equipamentos científicos laboratoriais, reconhecendo a importância da investigação e experimentação para controle/validação do conhecimento científico;
- Desenvolver capacidades para utilizar e trabalhar com equipamentos, máquinas e ferramentas tecnológicas;
- Comunicar os saberes adquiridos com correção linguística e rigor científico em diversos suportes escritos, orais e digitais;
- Reconhecer a importância de uma abordagem sistémica ciência, tecnologia, sociedade e ambiente (CTSA), face à necessidade de responder a questões que afetam a sociedade e o desenvolvimento sustentável;
- Reconhecer os avanços e as limitações das ciências e da sua aplicação nas tecnologias, bem como as suas implicações éticas, económicas e ecológicas;
- Manifestar atitudes de companheirismo, solidariedade e de respeito pela diversidade de opiniões;

Competências relacionadas com Ética, Cidadania, Ambiente e Sustentabilidade

Partilhar valores de cidadania na família, na escola e na sociedade;

- Promover a igualdade de género, adotando atitudes e comportamentos de combate à discriminação e a todas as formas de violência contra as mulheres e as meninas, nas esferas privada e pública;
- Reconhecer riscos, perigos e ameaças que se colocam às sociedades contemporâneas, à segurança global e nacional (terrorismo e criminalidade transnacionais, cibercriminalidade, pirataria...);
- Demonstrar interesse em cuidar e melhorar o seu entorno e o mundo;
- Identificar os principais problemas ecológicos, com destaque para o aquecimento global e as mudanças climáticas;
- Desenvolver a consciência e a sensibilidade perante os problemas ambientais;
- Analisar os recursos disponíveis para atingir os fins propostos, utilizando estratégias e planos a curto, médio e longo prazo, para a promoção do desenvolvimento sustentável:
- Tomar decisões e comprometer-se com a preservação do seu meio envolvente;
- Apreciar criticamente as exigências de defesa do património coletivo e agir em conformidade.

2.4. VISÃO GERAL DOS TEMAS / CONTEÚDOS

Física (114 horas)

O programa curricular de Física do 12.º ano integra conteúdos de dois grandes ramos da Física Clássica, a Mecânica e o Eletromagnetismo. Preconiza-se, no programa, a sua exploração de uma forma ajustada ao nível de escolaridade dos alunos e à carga horária semanal da disciplina. Nos dois temas aprofundam-se es conteúdos já iniciados em anos anteriores, nomeadamente, os temas "Som e Audição" e "Luz e Visão" do 8.º ano, e o tema "Forças e Interações" do 9.º ano. Procura-se, adicionalmente, neste ano de escolaridade, estabelecer uma ponte com o ensino superior, utilizando-se uma linguagem e um formalismo mais próximo deste nível de ensino.

No tema da-"Mecânica", exploram-se os subtemas são a "Cinemática e Dinâmica da partícula a uma e a duas dimensões" e—a "Gravitação". O tema "Fenómenos periódicos, ondulatórios e Eletromagnetismo" tem início com o subtema introdutório "Sinais e Ondas", sendo um pré-requisito para o estudo da Eletricidade e do Magnetismo. Prossegue-se com o estudo do "Eletromagnetismo", "Campo elétrico", "Campo magnético", "Indução eletromagnética" e "Circuitos de corrente alternada", sendo estes dois últimos subtemas abordados de forma introdutória. Por fim, abordase o subtema da "Luz" (radiação eletromagnética), enquanto fenómeno ondulatório.

2.5. INDICAÇÕES METODOLÓGICAS GERAIS

A planificação das atividades a realizar no âmbito da disciplina deve ter em conta critérios de diversidade metodológica e adequação a cada tema ou assunto específico e aos respetivos objetivos de aprendizagem, de modo a promover as várias competências que se espera que os alunos desenvolvam, tendo em conta a sua diversidade, as suas necessidades diferenciadas de aprendizagem e ambientes socioculturais, numa perspetiva de educação inclusiva. Deverá também ter-se em conta os seus conhecimentos e conceções prévias relacionadas com os conceitos em estudo, prevendo percursos diferenciados e flexíveis de aprendizagem e metodologias de trabalho fundamentadas em referenciais socio-construtivistas de aprendizagem.

A abordagem das temáticas do programa pode ser mais direcionada aos contextos educativos específicos das escolas e da sua localização territorial e deverá ser tida em conta na planificação das atividades a realizar, bem como a sua contextualização em questões de natureza socio-científica com eventual impacto na realidade local, regional, nacional e global.

O trabalho laboratorial é um componente privilegiado da educação científica em <u>Física</u>, pelo que o ensino <u>desta disciplinada Física</u> deve refletir <u>oesse</u> princípio geral de articulação entre o conhecimento <u>teórico</u> e o saber fazer <u>em laboratório</u>. <u>Adicionalmente, Por isso, oo</u>s alunos devem ser incentivados a trabalhar em grupo, desenvolvendo métodos próprios do trabalho científico, <u>de modo colaborativo</u> (investigar e comunicar usando vocabulário científico próprio da disciplina).

Face ao exposto, a planificação das atividades poderá contemplar:

- Aulas ou períodos de aulas expositivas, de natureza teórica e estruturada, para exploração de conteúdos conceptualmente elaborados:
- Atividades planeadas segundo metodologias ativas, tais como sala de aula invertida, aprendizagem por pares, aprendizagem baseada em problemas, aprendizagem baseada em projetos, entre outras;
- Atividades de consolidação das aprendizagens através da resolução de exercícios e problemas;
- Atividades práticas_—laboratoriais e experimentais;
- Trabalhos de investigação, individuais e em grupo, com produção de conteúdos e sua comunicação ao grupo/turma ou à comunidade escolar.
- Realização de visitas de estudo, para o aprofundamento e consolidação dos conteúdos programáticos.

Todas estas atividades podem ser enriquecidas com a utilização de recursos didáticos, nomeadamente, kits didáticos laboratoriais de <u>FísicaQuímica</u>, apresentações eletrónicas, vídeos, animações e simuladores computacionais, entre outros.

2.6. INDICAÇÕES GERAIS PARA A AVALIAÇÃO DAS APRENDIZAGENS

A avaliação das aprendizagens deve ser parte integrante da planificação das atividades letivas, enquanto instrumento ao serviço da regulação do ensino e das aprendizagens (Decreto-Lei n.º 28/2022, alínea w do art. 6.º, p. 1666). A avaliação engloba as seguintes vertentes: **diagnóstica** dos conhecimentos prévios sobre cada tema ou subtema, que possibilitará a adequação das atividades de aprendizagem ao que os alunos já sabem; **formativa**, para monitorizar o progresso das aprendizagens e permitir a orientação e o *feedback* aos alunos no sentido de melhorar o seu desempenho e/ou reajustar as atividades de ensino e de aprendizagem, "afirmando a dimensão eminentemente formativa da avaliação que se quer integrada e indutora de melhorias no ensino e na aprendizagem" (Decreto-Lei n.º 30/2022 (p. 1695)); **sumativa**, para classificar e certificar o desempenho dos alunos.

De acordo com o ponto 1 do art. 45.º do Decreto-Lei n.º 30/2022, de 12 de julho, "A avaliação nas disciplinas do domínio das Ciências deve integrar a dimensão da observação diária, a dimensão de avaliação escrita e a dimensão de natureza prática e experimental".

Deste modo, seguem-se indicações, sob a forma de descritores de desempenho, para a avaliação das aprendizagens da disciplina de Física no 12.º Ano, numa perspetiva de articulação e continuidade com as recomendações contidas nos programas dos anos anteriores, em particular nos do 10.º e 11.º anos.

É de realçar que, em termos práticos, as três grandes dimensões nas quais se organizam os descritores de desempenho não são mutuamente exclusivas e devem conjugar-se na conceção e realização de momentos específicos de avaliação. Deste modo, ao conceberem-se e realizarem-se momentos de avaliação, por exemplo, de natureza prática e experimental deverão contemplar-se descritores inseridos abaixo na dimensão da avaliação escrita e/ou na de observação direta.

Dimensão de avaliação escrita

- Utiliza termos e conceitos científicos das áreas de Física, enquadrados numa linguagem estruturada e de índole científica;
- Reconhece grandezas físicas envolvidas nos fenómenos em estudo e exprime as respetivas quantidades através de números e unidades de medida correspondentes às respetivas dimensões;
- Revela compreensão dos aspetos fundamentais referentes aos sistemas físicos objetos de estudo, bem como domínio das teorias e modelos correspondentes às duas áreas de conhecimento;
- Explica os fenómenos físicos relacionados com os temas de estudo previstos no programa, interpretando-os segundo uma base científica e caracterizando-os sob o ponto de vista dos seus efeitos e aplicações;
- Reconhece os benefícios da ciência e da tecnologia, sobretudo nos domínios da Física, para o bem-estar da sociedade.

Dimensão de natureza prática e experimental

- Aplica princípios e processos científicos próprios da Física;
- Resolve problemas concretos relacionados com os temas de estudo definidos no programa;
- Simula situações ou processos específicos que apresentam grau moderado de complexidade;
- Emite juízos criteriosos na realização de operações e cálculos sobre situações que envolvem fenômenos físicos e químicos, de origem natural ou antropogénica;
- Toma decisões com base em evidências e argumentos devidamente fundamentados.

Dimensão de observação diária

Sem prejuízo da observação diária se poder focar nos descritores de desempenho definidos para as dimensões da avaliação anteriores, consideram-se igualmente nesta dimensão os seguintes:

- Valoriza o conhecimento científico, destacando-se os domínios da Física, e revela gosto pela atividade científica;
- Demonstra atitude de rigor nas operações e espírito crítico na interpretação das situações;
- Assume critérios éticos associados à ciência e tecnologia, nomeadamente no que se refere a questões referentes aos domínios da Física;
- Revela preocupação com a integração dos saberes.

Tendo em conta a diversidade de aspetos a ter em conta no processo de avaliação das aprendizagens da disciplina de Física e considerando as finalidades e as funções da avaliação previstas no Sistema Nacional de Avaliação das Aprendizagens do Ensino Secundário, o professor deve acautelar o uso criterioso das diferentes modalidades, bem como dos procedimentos e instrumentos adequados.

A seleção dos instrumentos de avaliação deve ser adequada ao que se pretende avaliar. Tendo em conta a natureza diversa dos objetivos de aprendizagem, também os instrumentos de recolha de informação para avaliação o deve ser. Não obstante se poderem utilizar outros, sugerem-se alguns instrumentos de avaliação: fichas de avaliação escritas, questões de aula, trabalhos de pesquisa individuais ou em grupo, com ou sem apresentação à turma, rubricas para avaliar o desempenho na realização de atividades laboratoriais, relatórios de atividades laboratoriais, apresentações eletrónicas multimédia, vídeos, entre outros.

Os instrumentos de avaliação podem ter um caráter formativo ou sumativo com fins classificatórios e autorregulatórios, para o docente e para os alunos, e um mesmo instrumento poderá recolher informação sobre conteúdos de natureza diferente. A título de exemplo, uma ficha de avaliação escrita pode avaliar conteúdos mais teóricos, mas também a compreensão e interpretação de resultados decorrentes de uma atividade laboratorial. Deste modo, agrega-se no mesmo instrumento a avaliação

de objetivos de aprendizagem de naturezas diferentes, havendo economia de tempo para o docente e redução da pressão dos momentos de avaliação formais para os alunos.

A implementação dos instrumentos de avaliação deve ser equilibrada ao longo dos períodos letivos e, independentemente da sua finalidade (formativa ou sumativa classificatória), deverá ser fornecido aos alunos um *feedback* com informação relevante e em tempo útil. Esta informação terá duas funções complementares. Por um lado, fornece ao docente os dados necessários para orientar ou reorientar a ação educativa, apoiando as tomadas de decisão pedagógicas e didáticas, baseadas no conhecimento coletivo e individual do progresso das aprendizagens dos seus alunos. Por outro, o *feedback* relevante e atempado, por se revestir de um caráter formativo, mesmo que o instrumento de avaliação tenha uma função classificatória, é um dos fatores que mais contribui para o progresso das aprendizagens, uma vez que proporciona aos alunos a possibilidade de se autoavaliarem e autorregularem os hábitos e métodos de estudo. Assim, os momentos de reflexão e autoavaliação devem ser parte integrante das planificações, podendo ser realizados oralmente ou por escrito, por todos os alunos e ao longo dos períodos letivos.

3. ROTEIROS DE APRENDIZAGEM

3.1. NATUREZA E ROTEIROS DE APRENDIZAGENS

O roteiro de aprendizagens para a disciplina de Física do 12.º ano foi elaborado de forma articulada com os dos 10.º e 11.º anos, de modo a conferir continuidade, complementaridade, completude e coerência ao currículo do ensino secundário. Assim, este roteiro visa permitir que os alunos que pretendam prosseguir estudos no nível académico superior tenham adquirido conhecimentos, capacidades e competências relevantes e adequadas. Nesse sentido, perspetivou-se a formação integral dos alunos no que concerne a uma preparação sólida e abrangente no domínio da Física. Assim, espera-se que os alunos que pretendam prosseguir estudos numa área científica afim, estejam munidos das competências que lhes permitam fazer face aos desafios que o ensino superior e a vida ativa proporcionam.

3.2. ROTEIRO DE APRENDIZAGEM E INDICADORES DE AVALIAÇÃO DO PROGRAMA DO 12.º ANO

Áreas temáticas	Conteúdos e conceitos	Objetivos de aprendizagem (O aluno deve ser capaz de)	Sugestões metodológicas (O docente poderá)	Indicadores de avaliação das aprendizagens
Tema: Mecânica da partícula material e Gravitação Subtema: Cinemática e dinâmica da partícula a uma e a duas dimensões	Posição, equações paramétricas do movimento e trajetória. Deslocamento, velocidade média, velocidade e aceleração.	• Interpretar os conceitos de posição, velocidade e aceleração em movimentos a uma e a duas dimensões, recorrendo a situações reais e a simulações, e aplicar aqueles conceitos na resolução de problemas.	Fazer uma rRevisão do subtema 1.1 "Corpos em movimento" (9.º ano), recorrendo a uma ficha de trabalho. Referir que a equação da trajetória se obtém por eliminação do parâmetro tempo, no sistema constituído pelas respetivas equações paramétricas. Realçar o caráter vetorial do deslocamento. Analisar a trajetória e gráficos posição-tempo para determinar a distância, o deslocamento, a velocidade média e instantânea e a aceleração média e instantânea.	 Responde a questões teóricas que avaliem a compreensão dos conceitos de cinemática a duas dimensões. Resolve problemas quantitativos que exijam a aplicação de fórmulas e a resolução de problemas de movimento em duas dimensões.

Formatada: Sem marcas nem numeração

 Componentes tangencial
e normal da aceleração;
raio de curvatura.

- Segunda Lei de Newton (referencial fixo e referencial ligado à partícula).¹
- Condições iniciais do movimento e tipos de trajetória.
- Equações paramétricas de movimentos sujeitos à ação de uma resultante de forças constante com direção diferente da velocidade inicial; projéteis.

- Decompor, geometricamente, a aceleração nas suas componentes normal e tangencial.
- Aplicar, na resolução de problemas ligados a situações reais, as equações paramétricas do movimento de uma partícula sujeita à ação de forças de resultante constante com direção diferente da da velocidade inicial.
- Realizar uma atividade laboratorial para determinar a relação entre o alcance e a velocidade inicial de um projétil lançado horizontalmente.

- Efetuar a decomposição da aceleração nas suas componentes tangencial e normal, explicando o seu significado e determinando, analiticamente, essas componentes, em movimentos a <u>uma e a</u> duas dimensões.
- Analisar o lançamento vertical, horizontal e oblíquo de um projétil.
- Utilizar um simulador para demonstrar que quando a resistência do ar não é desprezável, a trajetória do projétil não é parabólica.
- Atividade laboratorial: determinação da relação entre o alcance e a velocidade inicial de um projétil lançado horizontalmente.

- Resolve problemas ligados a situações reais, usando as equações paramétricas do movimento, explicando as estratégias de resolução e os raciocínios demonstrativos que fundamentam uma conclusão.
- Realiza uma atividade laboratorial, formulando hipóteses, avaliando os procedimentos, interpretando os resultados e comunicando as conclusões.
- Elabora relatórios de atividades laboratoriais que envolvam medições e

¹ Ao nível do 12.º ano serão apenas utilizados referenciais cartesianos no estudo do movimento dos corpos.

Forças aplicadas e fo de ligação. Forças de atrito entre sólidos: atrito estático atrito cinético.	ligação e construir o diagrama das forças que atuam numa partícula, identificando as	Análise de diferentes forças de ligação nas atrações de um parque de diversões.	cálculos de movimento em duas dimensões. Resolve exercícios/problemas envolvendo os vários tipos de forças de ligação.
	 Interpretar e aplicar as leis empíricas para as forças de atrito estático e cinético, indicando que, em geral, o coeficiente de atrito cinético é inferior ao estático. 	Atividade Laboratorial: Determinação experimental do atrito estático e cinético entre duas superfícies.	Elabora relatórios de atividades laboratoriais que envolvam medições e cálculos de coeficientes de atrito estático e cinético entre duas superfícies em contacto.
Aplicações da Segu Lei de Newton a corpo com ligação e considerações energé (movimentos retilíneos circulares).	partículas sujeitas a ligações.	 Aplicação de fichas de trabalho para consolidação dos conteúdos. 	• Resolve exercícios e problemas aplicando a Segunda lei de Newton e usando considerações energéticas (Conservação da Energia Mecânica).

		eixos associados à		
		partícula.		
Cultana, Cravitação				
Subtema: Gravitação	 Leis de Kepler 	 Compreender a 	 Apresentar as Leis de 	 Resolve problemas
12 aulas)		evolução histórica do	Kepler, através do	qualitativos e quantitativos
	 Lei da Gravitação 	conhecimento científico	visionamento de filmes ou	envolvendo a aplicação
	Universal	ligada à formulação da Lei	leitura de textos,	das Leis de Kepler.
		da Gravitação Universal,	identificando marcos	
	 Campo gravítico 	interpretando o papel das	históricos que conduziram	 Realiza trabalhos de
		Leis de Kepler.	à sua formulação.	pesquisa interdisciplinares,
	 Força de gravitação 			individualmente ou em
		 Interpretar a expressão 	 Referir que o campo 	grupo, acerca da evolução
	 Energia potencial gravítica 	do campo gravítico criado	gravítico, num ponto, é a	histórica do conhecimento
		por uma massa pontual.	força gravítica, exercida	sobre gravitação e
			por unidade massa	movimentos dos astros do
			colocada nesse ponto.	Sistema Solar, e apresenta
				o trabalho ao grupo/turma
			 Analisar representações 	ou à escola, em formato
			gráficas representativas de	analógico ou digital.
			linhas de campo de modo	
			realçar que as linhas de	
			campo são linhas	
			imaginárias tangentes, em	
	, (cada ponto, ao campo	
			gravítico e indicam a	
			direção e o sentido do	
			campo.	
			· .	
			 Destacar que, num 	
			campo gravítico uniforme,	
			este apresenta as mesmas	
			características em	
			qualquer ponto, isto é, tem	
			a mesma intensidade,	
			direção e sentido. As	

		 Aplicar a conservação da energia mecânica no campo gravítico para determinar a velocidade de escape. Compreender a relação entre a velocidade de escape e a energia cinética necessária para superar a força gravitacional de um corpo celeste. Analisar situações hipotéticas ou reais onde a velocidade de escape é 	multimedia para introduzir e explicar o conceito de velocidade de escape. Exibir documentários ou vídeos educativos sobre viagens espaciais e a física por trás da velocidade de escape. Propor trabalhos de grupo onde os alunos investiguem diferentes	 Realiza trabalhos de grupo que envolvam pesquisa e apresentação sobre a velocidade de escape. Observação da participação dos alunos em discussões e atividades em sala de aula. Avaliação do envolvimento dos alunos em projetos práticos e colaborativos.
--	--	---	--	--

Tema: Fenómenos periódicos, ondulatórios e Eletromagnetismo Subtema: Sinais e Ondas (8 aulas)	Conceitos de sinal e de onda Propagação de um sinal Ondas transversais e ondas longitudinais Ondas mecânicas e ondas eletromagnéticas Onda periódica — periodicidade temporal e espacial Onda harmónica ou sinusoidal Onda complexa Velocidade de propagação Periodicidade espacial Comprimento de onda Amplitude de oscilação Periodicidade temporal	Caraterizar fenómenos periódicos (incluindo exemplos como oscilações de pêndulos, movimento harmónico simples – caso de uma mola. Interpretar, e caracterizar, fenómenos ondulatórios, salientando as ondas periódicas, distinguindo ondas transversais de longitudinais e ondas mecânicas de eletromagnéticas. Relacionar frequência, comprimento de onda e velocidade de propagação, explicitando que a frequência de vibração não se altera e depende apenas da frequência da fonte. Aplicar, na resolução de problemas, as periodicidades espacial e temporal de uma onda e a descrição gráfica de um sinal harmónico.	Iniciar o tema com questões mótivadoras, tais como: O que é um sinal? E uma onda periódica? De que depende a velocidade de propagação de uma onda? Aconselha-se a visualização de movimentos oscilatórios e ondulatórios reais e de simulações computacionais. Associar um sinal a uma perturbação que ocorre localmente, de curta ou longa duração, e que pode ser usado para comunicar, identificando exemplos. Identificar uma onda com a propagação de um sinal num meio, com transporte de energia, e cuja velocidade de propagação depende de características do meio.	Avaliação diagnóstica sobre os pré-requisitos do subtema Sinais e Ondas. Interpreta a propagação de sinais e ondas como fenómenos transportadores de energia e não de matéria. Resolve problemas qualitativos envolvendo a propagação de um sinal e as características da onda que lhe estão associadas. Resolve exercícios numéricos envolvendo a equação de onda explicitando as estratégias de resolução e os raciocínios que fundamentam os resultados.

 Frequência Onda harmónica ou sinusoidal Elongação Frequência angular Equação de onda (na forma y(t) = A sin(ωt)) 	explicando as estratégias de resolução e os raciocínios demonstrativos que fundamentam uma conclusão. • Perceber que as ondas eletromagnéticas são exemplos de fenómenos ondulatórios e periódicos, pois envolvem campos elétricos e magnéticos que oscilam perpendicularmente entre si e à direção de propagação.	Distinguir ondas longitudinais de transversais, dando exemplos. Distinguir ondas mecânicas de ondas eletromagnéticas. Associar período e comprimento de onda à periodicidade temporal e à periodicidade espacial da onda, respetivamente. Relacionar frequência, comprimento de onda e velocidade de propagação e concluir que a frequência e o comprimento de onda são inversamente proporcionais quando a velocidade de propagação de uma onda é constante, ou seja, quando ela se propaga num meio homogéneo. Realizar experiências com pêndulos e molas para ilustrar conceitos.	

Subtema:	 Carga elétrica e Lei da 	 Diferenciar os quatro 	 Estabelecer um quadro 	 Analisa e compara as
Eletromagnetismo	Conservação da carga	tipos de interações	comparativo entre o	quatro interações
Campo elétrico	elétrica	fundamentais: Gravitacional, a Nuclear	campo gravítico, o campo elétrico e o campo	fundamentais quanto à natureza e ao alcance.
(12 aulas)	Interações entre cargas elétricas e Lei de Coulomb Campo elétrico Permitividade elétrica de um meio Linhas de campo de um campo elétrico Semelhanças e diferenças entre as leis da força Coulombiana e da força Newtoniana Energia potencial elétrica	Fraca, a Eletromagnética e a Nuclear Forte. Interpretar as interações entre cargas elétricas através das grandezas campo elétrico, caracterizando esse campo através das linhas de campo. Relacionar a constante da lei de Coulomb com a permitividade do meio. Aplicar, na resolução de problemas, a Lei de Coulomb, explicando as estratégias de resolução. Caracterizar o campo elétrico criado por uma	magnético. Referir que, segundo a Lei de Coulomb, a intensidade da força de atração ou de repulsão entre duas cargas elétricas pontuais é diretamente proporcional ao produto dos módulos das cargas e inversamente proporcional ao quadrado da distância entre elas. Salientar que a direção e o sentido do campo elétrico num dado ponto quando a origem é uma carga pontual (positiva ou negativa), comparar a intensidade do campo em diferentes pontos e indicar	Caracteriza qualitativamente e quantitativamente a interação entre cargas elétricas. Resolve problemas aplicando a Lei de Coulomb, explicando as estratégias de resolução. Caracteriza o campo elétrico criado por uma carga pontual num ponto.
		carga pontual num ponto, identificando a relação	a sua unidade SI. Analisar a informação fornecida por linhas de	

		entre a distância à carga e	campo elétrico criado por	
		o módulo do campo.	duas cargas pontuais	
		·	quaisquer ou por duas	
		 Reconhecer que um 	placas planas e paralelas	
		sistema de cargas	com cargas simétricas,	
		elétricas possui energia	concluindo sobre a	
		potencial elétrica variável	variação da intensidade do	
		com a posição relativa das	campo nessa região e a	
		cargas.	direção e sentido do	
			campo num certo ponto.	
			Relacionar a direção e o	
			sentido do campo elétrico	
			num ponto com a direção	
			e sentido da força elétrica	
			que atua numa carga	
			pontual colocada nesse	
			ponto.	
			 Atividade Laboratorial: 	 Elabora relatórios de
		</td <td>Campo elétrico e</td> <td>atividades laboratoriais</td>	Campo elétrico e	atividades laboratoriais
			superfícies	sobre superfícies
Campo magnético			equipotenciais.	equipotenciais de um
Jumpo magnonoo	ے (campo elétrico.
(6 aulas)				
			Identificar um campo	
		 Identificar as origens do 	magnético pela sua ação	Caracteriza o campo
	Faura many filipa	campo magnético,	sobre imanes, que se	magnético através das
	 Força magnética 	campo magnetico, caracterizando-o através	manifesta através de	linhas de campo
	 Campo magnético e 	das linhas de campo	forças magnéticas.	observadas
	campo magnético uniforme	observadas	iorção magnotidas.	experimentalmente.
	Campo magnetico unilonne	experimentalmente.	 Indicar que um campo 	
		experimentalmente.	magnético pode ter origem	
			em ímanes ou em	

			correntes elétricas e	
	 Campo magnético criado 	Relacionar o campo	descrever a experiência de	
	por um íman	magnético com a força	Oersted, identificando-a	
		magnética exercida sobre	como a primeira prova	
	 Campo magnético criado 	um íman.		
	por uma corrente elétrica		experimental da ligação	
			entre eletricidade e	
	 Fluxo do campo 		magnetismo.	
	magnético			
			Caracterizar a grandeza	
			campo magnético num	
			ponto, a partir da	
		<i>x</i> \	representação de linhas de	
			campo quando a origem é	
			um íman, uma corrente	
			elétrica num fio retilíneo,	
Indução			numa espira circular ou	
eletromagnética			num solenoide, e indicar a	
oron omagnonou			sua unidade SI.	
(14 aulas)				
			Defining the sea are 4 time	
			Definir fluxo magnético	
		 Investigar os contributos 	que atravessa uma espira,	 Realiza trabalhos de
	, (dos trabalhos de Oersted,	identificando as condições	grupo que envolvam
	la dua Sa alatua mana sa Stiasa	Faraday, Maxwell e Hertz	que o tornam máximo ou	pesquisa e apresentação
	Indução eletromagnética e	para o eletromagnetismo,	nulo, indicar a sua unidade	sobre os trabalhos de
	Lei de Faraday	analisando o seu papel na	SI e determinar fluxos	Oersted, Faraday, Maxwell
		construção do	magnéticos para uma	e Hertz.
	 Ação de campos 	conhecimento científico, e	espira e várias espiras	
	magnéticos sobre cargas	comunicando as	iguais e paralelas.	 Resolve problemas
	em movimento	conclusões.		aplicando a Lei de Faraday
		COTICIUSOES.	 Realçar que a força 	
	 Produção de corrente 	Aplicar na recolução de	magnética é sempre	
	elétrica alternada em	Aplicar, na resolução de	perpendicular ao plano	
	centrais elétricas	problemas, a Lei de	definido pelos vetores	
		Faraday, interpretando	·	

Circuitos de corrente alternada (4 aulas)		aplicações da indução eletromagnética. Caracterizar as forças exercidas por um campo magnético uniforme sobre cargas elétricas em movimento, concluindo sobre os movimentos dessas cargas.	velocidade e campo magnético, contrariamente ao que acontece com a força gravítica e a força elétrica, que têm a direção do campo. Interpretar a produção de corrente elétrica alternada em centrais elétricas com base na indução eletromagnética e iustificar a vantagem de aumentar a tensão elétrica para o transporte da energia elétrica.	▪ Responde a um quião de
	 Circuitos em corrente alternada (CA) Corrente alternada sinusoidal Grandezas caraterísticas da CA 	 Relaciona a corrente elétrica com a tensão num circuito de corrente alternada (CA). Comparar os efeitos da corrente alternada sinusoidal com os efeitos da corrente contínua (CC). 	Visionamento do filme "Guerra das correntes" Atividade laboratorial: Construção de um gerador simples de corrente alternada (http://amasci.com/amateu t/coilgen.html)	 Responde a um guião de exploração do filme. Apresenta o Gerador simples de corrente alternada explicando as bases teóricas do seu funcionamento

eleti A ond R da r	Radiação e espetro eletromagnético A luz como fenómeno ondulatório	 Aplicar, na resolução de problemas, as Leis da Reflexão e da Refração da luz, explicando as estratégias de resolução e os raciocínios demonstrativos que fundamentam uma conclusão. Interpretar o papel do conhecimento sobre fenómenos ondulatórios no desenvolvimento de produtos tecnológicos. Fundamentar a utilização das ondas eletromagnéticas nas comunicações e no 	Este tema pode ser iniciado salientado a relevância da luz no conhecimento do mundo, proporcionado pela investigação científica, e o papel da luz nas mais variadas aplicações tecnológicas. ²	
	Reflexão da luz e Leis da reflexão Aplicações da reflexão da luz		Caracterizar a reflexão de uma onda eletromagnética, comparando as ondas incidente e refletida usando a frequência, velocidade, c.d.o. e intensidade, e identificar aplicações da reflexão	 Resolve problemas envolvendo as leis da reflexão. Resolve problemas envolvendo as Leis de Snell-Descartes.

² Apesar de a luz ser estudada como fenómeno ondulatório (na disciplina de Física do 12.º ano), poder-se-á relembrar que a luz também tem um comportamento corpuscular, tal como abordado no 10.º ano no subtema "Estrutura do átomo e espectros".

	conhecimento do	(radar, leitura de códigos	
	Universo.	de barras, etc.).	
 Refração da luz e 			
Índice de refração		 Caracterizar a refração 	
		de uma onda, comparando	
 Leis da refração da luz 		as ondas incidente e	
(Leis de Snell-Decartes)		refratada usando a	
(Ecis de Griefi Decartos)		frequência, velocidade,	
		c.d.o. e intensidade.	
		 Estabelecer, no 	
	A	fenómeno de refração,	
		relações entre índices de	
		refração e velocidades de	
		propagação, índices de	
		refração e comprimentos	
		de onda, velocidades de	
Reflexão total da luz		propagação e c.d.o.	Estabelece a
Tronoxad total da laz			associação entre a
		 Explicitar as condições 	reflexão total da luz e as
		para que ocorra reflexão	suas aplicações
		total da luz, exprimindo-as	tecnológicas, como a
		quer em função do índice	fibra ótica.
		de refração quer em	
		função da velocidade de	
		propagação, e calcular	
		ângulos-limite.	
Difração da luz			
		 Descrever o fenómeno 	
		da difração e as condições	
Efeito Doppler		em que pode ocorrer.	Reconhece o Efeito
		_	Doppler em fenómenos
As ondas		Descrever	sonoros do quotidiano e
eletromagnéticas nas		qualitativamente o efeito	na aplicação ao estudo
		Doppler e interpretar o	

comunicações e no conhecimento do Universo	Investigar, experimentalmente, os fenómenos de reflexão, refração, reflexão total e difração da luz, determinando o índice de refração de um meio	desvio no espetro para c.d.o. maiores como resultado do afastamento entre emissor e recetor, exemplificando com o som e com a luz. - Atividade Laboratorial: Verificação das Leis de	da dinâmica do cosmos (redshift e afastamento das galáxias). • Elabora relatórios de atividades laboratoriais sobre a verificação das Leis de Snell-Descartes.
	e o c.d.o. da luz num laser.	Snell-Descartes. - Atividade Laboratorial:	Elabora relatórios de atividades laboratoriais sobre a determinação do
	.02	Comprimento de onda e Difração.	c.d.o. de um laser a partir do fenómeno da difração.
JERSK!			

4. BIBLIOGRAFIA CONSULTADA

Institucional:

Documentos curriculares de referência de Cabo Verde:

Decreto-lei n.º 27/2022, de 12 de julho, Boletim Oficial da República de Cabo Verde

Desenho dos perfis de escolarização e formação dos alunos do ensino não superior, Direção Nacional da Educação, Ministério da Educação, fevereiro de 2022

Orientações Gerais e Estrutura para a Elaboração dos Programas das Disciplinas do Ensino Secundário, Ministério da Educação, abril de 2021

Programa da Disciplina de Físico-Química 7.º e 8.º anos, Direção Nacional da Educação, Ministério da Educação, agosto de 2018

Programa de Físico-Química 9.º ano de escolaridade, Direção Nacional da Educação, Ministério da Educação, setembro de 2022

Programa de Física Química – 10.º Ano de escolaridade – Componente de Formação Específica Área de Ciência e Tecnologia, Direção Nacional da Educação, Ministério da Educação, setembro de 2022

Programa de Física Química – 11.º Ano de escolaridade – Componente de Formação Específica Área de Ciência e Tecnologia, Direção Nacional da Educação, Ministério da Educação, junho de 2024

Referencial para o Ensino Secundário Geral de Cabo Verde e Planos de Estudo, Ministério da Educação, agosto de 2021

Científica:

Cachapuz, A., Praia, J. e Jorge, M. (2002). Ciências, Educação em Ciências e Ensino das Ciências. Lisboa: Ministério da Educação

Carvalho, P.; Sousa, A.; Paiva, J.; Ferreira, A. (2013). Ensino experimental das ciências: um guia para professores do ensino secundário Física e Química. 2.a Ed., Universidade do Porto

Halliday D, Resnick R, Walker J. (1993) Fundamentals of Physics, 4th Ed. New York City John Wiley & Sons Inc.

Leão, A. F. C.; Goi, M. E. J. (2021) A look at Bruner's learning theory on Science teaching. Research, Society and Development, [S. I.], v. 10, n. 13, p. e367101321214. DOI: 10.33448/rsd-v10i13.21214. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21214. Acesso em: 7 jun. 2024.

Lourenço, V. (Coord.) (2019). PISA 2018 – PORTUGAL. Relatório Nacional. IAVE, I. P.

MEC (2017), Perfil dos alunos à saída da escolaridade obrigatória (http://hdl.handle.net/10400.26/22377) (acedido no dia 27 de julho de 2023).

MEC (2018), Aprendizagens essenciais de Física e Química A – Ensino Secundário (http://www.dge.mec.pt/aprendizagens-essenciais-0) (acedido no dia 27 de julho de 2023).

Serway, R.; Jewett, J. (2014), Physics for Scientists and Engineers with Modern Physics, 9th Edition, Brooks/Cole, Boston/USA

Valadares, J. (2006). O ensino experimental das Ciências: do conceito à prática: Investigação/Acção/Reflexão. Revista proFORMAR online. Edição 13 Janeiro 2006

5. RECURSOS EDUCATIVOS RECOMENDADOS

Materiais e equipamentos

As escolas devem possuir laboratórios devidamente equipados com material de laboratório e equipamentos complementares (e.g. sensores digitais), que permitam a realização das atividades laboratoriais indicadas no roteiro de aprendizagem.

Cada aluno deve ter uma máquina de calcular gráfica não programável para poder trabalhar em sala de aula e, desejavelmente, em casa, de modo a promover o trabalho autónomo.

Os laboratórios de Física devem possuir computadores (fixos ou portáteis) numa relação de, pelo menos, um computador para três alunos.

Simuladores

- https://phet.colorado.edu/pt/
- https://www.vascak.cz/physicsanimations.php?l=pt
- https://javalab.org/en/
- https://ophysics.com/

Vídeos

- https://www.youtube.com/watch?v=54rgpv3SBOU (série de vídeos sobre Cinemática)
- https://www.youtube.com/watch?v=vAgN3U36obA&list=PLNfWNKz4iEr-T8T8Qv7rKKcI0D-ixlvML (série de vídeos sobre Cinemática)
- https://www.youtube.com/playlist?list=PLF06ERiJT7bZmkB34MkF0BO2RiAruZMO (série de vídeos sobre Forças, Leis de Newton e Movimentos)
- https://www.youtube.com/watch?v=Plfc16aYuw0 (vídeo sobre as Leis de Kepler)
- https://www.youtube.com/watch?v=vnmweU0gzd8 (vídeo sobre Carga Elétrica e Campo Elétrico)
- https://www.youtube.com/watch?v=Aco8q6QLXaY (vídeo sobre Eletromagnéticas)
- https://www.youtube.com/watch?v=rJGxz72RG54&t=127s (vídeo sobre Campo magnético criado por ímanes e correntes elétricas)

Sítios Web

- Casa das Ciências Bem-vindo (casadasciencias.org) https://www.casadasciencias.org/

Cântico da Liberdade

Canta, irmão Canta, meu irmão Que a liberdade é hino E o homem a certeza.

Com dignidade, enterra a semente No pó da ilha nua; No despenhadeiro da vida A esperança é do tamanho do mar Que nos abraça, Sentinela de mares e ventos Perseverante Entre estrelas e o Atlântico Entoa o cântico da liberdade.

> Canta, irmão Canta, meu irmão Que a liberdade é hino E o homem a certeza!

